

Leveraging LANL's D-WAVE 2X for Random Number Generation

Sarah Michalak

Rick Picard

michalak@lanl.gov

April 27, 2017

UNCLASSIFIED

The Idea

- The DWAVE QPU produces strings of 0s and 1s
- Can they form the basis of a random number generator?
- With the "zero" problem, each qubit theoretically should take the value 1 with probability 0.50

$$\sum_{i} h_{i} \sigma_{z}^{(i)} + \sum_{i>j} J_{i,j} \sigma_{z}^{(i)} \sigma_{z}^{(j)}$$

- But information from DWAVE suggests this ideal is not met
- Non-random bit strings might be transformed to random bit strings

UNCLASSIFIED

Characterize Ising Bit Strings

- Based on consultation with DWAVE, run the zero problem on Ising while varying two input parameters:
 - Annealing time: 5, 10, 20 microseconds
 - Readout thermalization: 0, 50, 100 microseconds
 - Other parameters set to default values
 - Programming thermalization set to 1000 microseconds
 - 9 test conditions; 8000 samples; don't run during shim times
 - 8000 samples a value that worked for all test conditions

Characterization Strategy

- Consider:
 - Results for each of 8000 samples of 1095 operational qubits
 - Results for each of 1095 operational qubits for 8000 samples
- Characterization includes:
 - Means (probability = 1) (sample and qubit)
 - Spatial (qubit) or temporal correlation* (qubit and sample)

^{*} Although we use the term correlation because of its broad familiarity, association is a better term for binary data.

Characterization Results for 8000 Samples

- Mean = mean of 1095 qubit values for each of 8000 samples
 - Vary from about .44 to .56
 - Autocorrelation in sample means

Characterization Results for 1095 Qubits I

- Mean = mean of 8000 samples for each of 1095 qubits
 - Vary from about .35 to .65, with occasional more extreme values

UNCLASSIFIED

Characterization Results for 1095 Qubits II

- Temporal correlation within qubits
 - Strings of 0s and of 1s are too long for independence to hold
- No apparent spatial correlation in qubit means
- Evidence of negative spatial correlation in qubit values
 - Within-cell neighbors, coupled qubits in different cells, coupled qubits in the same cell

Diagram by Denny Dahl UNCLASSIFIED

Future Work

- Develop a statistical or other model for the bit string data
 - Requires additional characterization work
- Transform raw bit strings to random bit strings
- Test results using standard RNG tests, e.g., TestU01

Acknowledgements

- Denny Dahl
- Mauricio Reis
- Trevor Lanting
- Bill Press

